Let’s go around

Runway excursion has been the most frequent category of aviation accidents for many years now, and according to Flight Safety Foundation studies 83% of these accidents could have been prevented with a go-around. Moreover, 54% percent of all accidents could be prevented by going around, meaning the go-around is perhaps one of the most critical strategies in preventing aviation accidents.

Go around

Photo from Radko Našinec video Crosswind landing results in almost crash / Boeing 737 hard touchdown + go around, Prague (LKPR)

However, compliance with go-around policies is extremely poor among the industry, only 3% of unstable approaches result in go-around policy compliance.

On the other hand, going around is not risk-free. During the go-around, there is an increased risk of loss of control-LOC events, as we have seen in several major accidents in the last two decades, but there are risks of controlled flight into terrain-CFIT and midair collision-MAC too.

As Flight Safety Foundation states, in the Go-Around Decision-Making and Execution Project final report, these risks associated with conducting a go-around could be triggered by:

  • Ineffective initiation of a go-around, which can lead to LOC;
  • Failure to maintain control during a go-around, which can lead to LOC, including abnormal contact with the runway or to CFIT;
  • Failure to fly the required track, which can lead to CFIT or MAC;
  • Failure to maintain traffic separation, which can lead to MAC; and,
  • Generation of wake turbulence, which may create a hazard for another aircraft that can lead to LOC.

Therefore, the go-around decision should balance the risk associated with the continuing to land with the risk associated with the go-around itself.

Besides the operational, procedural and technical aspects, there are several Human Factors issues associated with a go-around decision and execution. These Human Factors lessons have been learned from incidents and accidents associated with going around and have been studied further and thorough by several organizations around the world. Let’s review some of them:

  • Although a go-around is considered as a normal procedure, a BEA study showed that a go-around does not often occur during operations, could be complex in terms of workload and is one of the maneuvers that are poorly represented by simulators. For all these reasons, “in practice, the go-around procedure is not a normal procedure but a specific one”. (Bureau d’Enquêtes et d’Analyses (BEA) pour la Sécurité de l’Aviation civile. Study of Airplane State Awareness during Go-Around. August 2013)
  • A go-around is a normal but no routinely executed procedure for most commercial pilots. A long-haul commercial pilot may conduct one go-around every two to three years whereas a short-haul commercial pilot may conduct a go-around once or twice a year. (Flight Safety Foundation Go-Around Decision-Making and Execution Project final report)
  • Is poorly represented by full flight simulators, due to no realistic ATC environment and the SIM inability to represent the physiological sensations associated with a go-around
  • Produces a disruption that often is unexpected by the flight crew, therefore, can induce the startle effect
  • It breaks the continuity of tasks being performed and suddenly demands a new set of actions with discontinuous tasks and disrupted rhythms of execution
  • It comprehends many tasks of different nature which must be performed in a limited period of time
  • The maneuvers required are varied and must be performed rapidly
  • The parameters that must be controlled are numerous and rapidly changing
  • Besides to monitor attitude, thrust, flight path, aircraft configuration and pitch trim, pilots have to monitor the autopilot, the flight director, the autothrottle, their modes, cross check one to each other and the airplane to be sure they themselves and the plane are doing the right thing
  • All of the above could produce an information overload, high workload and stress especially when the startle effect is also present
  • This sudden high workload is higher for the Pilot Monitoring-PM than that for the Pilot Flying-PF. PMs have to deal with the readbacks of ATC instructions, the callouts, the monitoring of the PF’s flight control, the verification of the pitch attitude and the verification of flight mode annunciator (FMA) modes. This high workload often prevents the PM from fulfilling the task of monitoring the PF
  • As stress can reduce the ability to execute complex actions, the higher the level of stress the higher the performance can be compromised
  • Stress also could lead to attention channelling which produces excessive focusing on some task while neglecting others
  • “Automatic systems could add to the problems because their initial engagement modes are different from those expected for the go-around … and when they are neither called out nor checked, this leads the aeroplane to follow an unwanted flight path” (BEA Study on Aeroplane State Awareness During Go-Around)
  • All these, the startle effect, the time pressure, the automation issues, the cognitive overload, the potentially overwhelming situation could produce a degradation of CRM skills
  • Spatial disorientation could be an aggravating factor
  • Somatogravic illusions induced by the linear acceleration produced by the full thrust, maybe in a relatively light at the end of a flight plane, can cause the PF to reduce the pitch angle. This may induce loss of control during the go-around. Full flight simulators lack the ability to accurately represent a somatogravic illusion
  • Low relevant experience of one or both pilots can affect the effectiveness of monitoring during go-around
  • Complex arrivals, departures and go-around procedures increment the workload for the flight crews and could be another aggravating factor
  • In the same way, the intervention of ATC with too much information in a radio transmission can lead to pilot confusion
  • Changes to go-around instructions increase the already high workload for pilots. Same could happen with late provision of go-around instructions
  • Sometimes ATC instructions are not compatible with aircraft performance
  • Bringing out unpublished go-around tactical instructions can place high demands on pilots

The decision to go around is perhaps the one with most impact has in aviation accident reduction. How can the risk associated be mitigated and how compliance with go-around policies can be improved?

Answering that question is obviously far beyond the scope of this article. There are now numerous studies on the subject with the results of research, findings and analysis, with proposed strategies and recommendations for the industry, the regulators, the operators, the flight crews and the air traffic services providers. Nonetheless, several factors can be stressed and highlighted here:

  1. “Pilots and their employers should understand that one of the many reasons that violating approach minimums is unacceptable is because evidence indicates that if a go-around then becomes necessary, the chances of a safe transition to the go-around are reduced.” (Flight Safety Foundation Go-Around Decision-Making and Execution Project final report). So NOT violate approach minimums
  2. “The lack of decision is the leading risk factor. In other words, if you’d made your decision earlier in the process, you’d probably able to execute the go-around better than forced into it by having an unstabilized approach, then, at the very last second, deciding have to go around,” (Dave Carbaugh, presentation to Flight Safety Foundation’s 67th annual International Air Safety Summit, 2014) So DO NOT delay the decision, it could prevent the situation to escalate.
  3. “Ensure that go-around training integrates instruction explaining the methodology for monitoring primary flight parameters, in particular, pitch, thrust, then speed.” (BEA Study on Aeroplane State Awareness During Go-Around) It seems obvious, but apparently, it has not been.
  4. “Ensure that go-around training and awareness appropriately reflect different go-around execution risk scenarios” (Flight Safety Foundation Go-Around Decision-Making and Execution Project final report) 
  5. Enhance training “… including realistic detailed training scenarios based on current technology and risks” (BEA Study on Aeroplane State Awareness During Go-Around)
  1. “Review go-around policy, procedures and documentation to maximize their effectiveness, clarity and understanding.” (Flight Safety Foundation Go-Around Decision-Making and Execution Project final report)
  2. “Study the additional technical and regulatory means required to mitigate the shortcomings of CRM in high workload and/or unusual conditions” (BEA Study on Aeroplane State Awareness During Go-Around)
  3. “Air traffic controllers, except where necessary for safety reasons, do not give instructions that are in contradiction with the published missed-approach procedure; and that, when necessary, the instructions are announced to crews as early as possible during the approach.” (BEA Study on Aeroplane State Awareness During Go-Around)

As Captain Dave Carbaugh, stated in his presentation to Flight Safety Foundation’s 67th annual International Air Safety Summit (IASS) in Abu Dhabi, United Arab Emirates, in November 2014 “30 years ago we had low thrust-to-weight ratios, so the airplane just didn’t climb very quickly. We had less traffic density, so there wasn’t anybody in front of you and … and a lot of times, the go-round was non-complex. ‘Fly runway heading to 4,000. It was basically easy. But those days are gone…”

REFERENCES

  1. Blajev, Tzvetomir, Curtis, William. Go-Around Decision-Making and Execution Project. Final report to Flight Safety Foundation. March 2017
  2. Bureau d’Enquêtes et d’Analyses (BEA) pour la Sécurité de l’Aviation civile. Study of Airplane State Awareness during Go-Around. August 2013
  3. Rosenkrans, Wayne. Go-Around Risks. AeroSafety World April 2015. https://flightsafety.org/asw-article/go-around-risks/

FURTHER READING

  1. MyCargo B744 fatal accident at Kyrgyz Republic, Jan 16th, 2017. Preliminary Report
  2. Going around with no thrust. Emirates B773 accident at Dubai on August 3rd, 2016, interim report
  3. The Head-Up Illusion: do you remember it?
  4. Armavia A320 crash during go-around at night in poor meteorological conditions
  5. Tatarstan B735 crash during go-around at night. Learning from the recent past
  6. Going around with all engines operating
  7. Speaking of going around
  8. Loss of flight crew airplane state awareness 

**********************

minime2By Laura Victoria Duque Arrubla, a medical doctor with postgraduate studies in Aviation Medicine, Human Factors and Aviation Safety. In the aviation field since 1988, Human Factors instructor since 1994. Follow me on facebook Living Safely with Human Error and twitter@dralaurita. Human Factors information almost every day

2 thoughts on “Let’s go around

  1. Good Article, Being go-around minded should be the first line in our minds during every approach, how hard is to put that on practice, Human beings…

    Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s